The Terrorist's Cookbook
Written BY: UNKNOWN AUTHOR
(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)
2.0 BUYING EXPLOSIVES AND PROPELLANTS
Almost any city or town of reasonable size has a gun store and
a pharmacy. These are two of the places that potential terrorists visit in
order to purchase explosive material. All that one has to do is know something
about the non-explosive uses of the materials. Black powder, for example,
is used in blackpowder firearms. It comes in varying "grades", with each
different grade being a slightly different size. The grade of black powder
depends on what the calibre of the gun that it is used in; a fine grade of
powder could burn too fast in the wrong caliber weapon. The rule is:
the smaller the grade, the faster the burn rate of the powder.
2.01 BLACK POWDER
Black powder is generally available in three grades. As stated before,
the smaller the grade, the faster the powder burns. Burn rate is extremely
important in bombs. Since an explosion is a rapid increase of gas volume in
a confined environment, to make an explosion, a quick-burning powder is
desirable. The three common grades of black powder are listed below, along
with the usual bore width (calibre) of what they are used in. Generally,
the fastest burning powder, the FFF grade is desirable. However, the other
grades and uses are listed below:
GRADE BORE WIDTH EXAMPLE OF GUN
_____ __________ ______________
F .50 or greater model cannon; some rifles
FF .36 - .50 large pistols; small rifles
FFF .36 or smaller pistols; derringers
The FFF grade is the fastest burning, because the smaller grade has
more surface area or burning surface exposed to the flame front. The larger
grades also have uses which will be discussed later. The price range of
black powder, per pound, is about $8.50 - $9.00. The price is not affected
by the grade, and so one saves oneself time and work if one buys the finer
grade of powder. The major problems with black powder are that it can be
ignited accidentally by static electricity, and that it has a tendency to
absorb moisture from the air. To safely crush it, a bomber would use a plastic
spoon and a wooden salad bowl. Taking a small pile at a time, he or she would
apply pressure to the powder through the spoon and rub it in a series of strokes
or circles, but not too hard. It is fine enough to use when it is about as fine
as flour. The fineness, however, is dependant on what type of device one wishes
to make; obviously, it would be impracticle to crush enough powder to fill a 1
foot by 4 inch radius pipe. Anyone can purchase black powder, since anyone can
own black powder firearms in America.
2.02 PYRODEX
Pyrodex is a synthetic powder that is used like black powder. It comes
in the same grades, but it is more expensive per pound. However, a one pound
container of pyrodex contains more material by volume than a pound of black
powder. It is much easier to crush to a very fine powder than black powder, and
it is considerably safer and more reliable. This is because it will
not be set off by static electricity, as black can be, and it is less inclined
to absorb moisture. It costs about $10.00 per pound. It can be crushed in the
same manner as black powder, or it can be dissolved in boiling water and dried.
2.03 ROCKET ENGINE POWDER
One of the most exciting hobbies nowadays is model rocketry. Estes is
the largest producer of model rocket kits and engines. Rocket engines are
composed of a single large grain of propellant. This grain is surrounded by
a fairly heavy cardboard tubing. One gets the propellant by slitting the tube
lengthwise, and unwrapping it like a paper towel roll. When this is done, the
grey fire clay at either end of the propellant grain must be removed. This is
usually done gently with a plastic or brass knife. The material is exceptionally
hard, and must be crushed to be used. By gripping the grain on the widest
setting on a set of pliers, and putting the grain and powder in a plastic bag,
the powder will not break apart and shatter all over. This should be done to
all the large chunks of powder, and then it should be crushed like black powder.
Rocket engines come in various sizes, ranging from 1/4 A - 2T to the incredibly
powerful D engines. The larger the engine, the more expensive. D engines come
in packages of three, and cost about $5.00 per package. Rocket engines are
perhaps the single most useful item sold in stores to a terrorist, since they
can be used as is, or can be cannibalized for their explosive powder.
2.04 RIFLE/SHOTGUN POWDER
Rifle powder and shotgun powder are really the same from a practicle
standpoint. They are both nitrocellulose based propellants. They will be
referred to as gunpowder in all future references. Gunpowder is made by the
action of concentrated nitric and sulfuric acid upon cotton. This material is
then dissolved by solvents and then reformed in the desired grain size. When
dealing with gunpowder, the grain size is not nearly as important as that of
black powder. Both large and small grained gunpowder burn fairly slowly
compared to black powder when unconfined, but when it is confined, gunpowder
burns both hotter and with more gaseous expansion, producing more pressure.
Therefore, the grinding process that is often necessary for other propellants
is not necessary for gunpowder. Gunpowder costs about $9.00 per pound. Any
idiot can buy it, since there are no restrictions on rifles or shotguns in the
U.S.
2.05 FLASH POWDER
Flash powder is a mixture of powdered zirconium metal and various
oxidizers. It is extremely sensitive to heat or sparks, and should be treated
with more care than black powder, with which it should NEVER be mixed. It is
sold in small containers which must be mixed and shaken before use. It is very
finely powdered, and is available in three speeds: fast, medium, and slow. The
fast flash powder is the best for using in explosives or detonators. It burns
very rapidly, regardless of confinement or packing, with a hot white "flash",
hence its name. It is fairly expensive, costing about $11.00. It is sold
in magic shops and theatre supply stores.
2.06 AMMONIUM NITRATE
Ammonium nitrate is a high explosive material that is often used as
a commercial "safety explosive" It is very stable, and is difficult to ignite
with a match. It will only light if the glowing, red-hot part of a match is
touching it. It is also difficult to detonate; (the phenomenon of detonation
will be explained later) it requires a large shockwave to cause it to go high
explosive. Commercially, it is sometimes mixed with a small amount of
nitroglycerine to increase its sensitivity. Ammonium nitrate is used in the
"Cold-Paks" or "Instant Cold", available in most drug stores. The "Cold Paks"
consist of a bag of water, surrounded by a second plastic bag containing the
ammonium nitrate. To get the ammonium nitrate, simply cut off the top of the
outside bag, remove the plastic bag of water, and save the ammonium nitrate in
a well sealed, airtight container, since it is rather hydroscopic, i.e. it
tends to absorb water from the air. It is also the main ingredient in many
fertilizers.
2.1 ACQUIRING CHEMICALS
The first section deals with getting chemicals legally. This section
deals with "procuring" them. The best place to steal chemicals is a college.
Many state schools have all of their chemicals out on the shelves in the
labs, and more in their chemical stockrooms. Evening is the best time to enter
lab buildings, as there are the least number of people in the buildings, and
most of the labs will still be unlocked. One simply takes a bookbag, wears
a dress shirt and jeans, and tries to resemble a college freshman. If anyone
asks what such a person is doing, the thief can simply say that he is looking
for the polymer chemistry lab, or some other chemistry-related department
other than the one they are in. One can usually find out where the various
labs and departments in a building are by calling the university. There
are, of course other techniques for getting into labs after hours, such as
placing a piece of cardboard in the latch of an unused door, such as a back
exit. Then, all one needs to do is come back at a later hour. Also, before
this is done, terrorists check for security systems. If one just walks into a
lab, even if there is someone there, and walks out the back exit, and slip the
cardboard in the latch before the door closes, the person in the lab will never
know what happened. It is also a good idea to observe the building that one
plans to rob at the time that one plans to rob it several days before the
actual theft is done. This is advisable since the would-be thief should know
when and if the campus security makes patrols through buildings. Of course, if
none of these methods are successful, there is always section 2.11, but as a
rule, college campus security is pretty poor, and nobody suspects another
person in the building of doing anything wrong, even if they are there at an
odd hour.
2.11 TECHNIQUES FOR PICKING LOCKS
If it becomes necessary to pick a lock to enter a lab, the world's
most effective lockpick is dynamite, followed by a sledgehammer. There are
unfortunately, problems with noise and excess structural damage with these
methods. The next best thing, however, is a set of army issue lockpicks.
These, unfortunately, are difficult to acquire. If the door to a lab is locked,
but the deadbolt is not engaged, then there are other possibilities. The rule
here is: if one can see the latch, one can open the door. There are several
devices which facilitate freeing the latch from its hole in the wall. Dental
tools, stiff wire ( 20 gauge ), specially bent aluminum from cans, thin pocket-
knives, and credit cards are the tools of the trade. The way that all these
tools and devices are uses is similar: pull, push, or otherwise move the latch
out of its hole in the wall, and pull the door open. This is done by sliding
whatever tool that you are using behind the latch, and pulling the latch out
from the wall. To make an aluminum-can lockpick, terrorists can use an aluminum
can and carefully cut off the can top and bottom. Cut off the ragged ends of the
can. Then, cut the open-ended cylinder so that it can be flattened out into a
single long rectangle. This should then be cut into inch wide strips. Fold the
strips in 1/4 inch increments (1). One will have a long quadruple-thick 1/4
inch wide strip of aluminum. This should be folded into an L-shape, a J-shape,
or a U-shape. This is done by folding. The pieces would look like this:
(1)
_________________________________________________________ v
1/4 |_______________________________________________________| |
1/4 |_______________________________________________________| | 1 inch
1/4 |_______________________________________________________| |
1/4 |_______________________________________________________| |
^
Fold along lines to make a single quadruple-thick piece of
aluminum. This should then be folded to produce an L,J,or U shaped
device that looks like this:
__________________________________________
/|________________________________________|
| |
| | L-shaped
| |
| |
| |
|_|
_____________________________
/|___________________________|
| |
| | J-shaped
| |
| |_________
\|_______|
_____________________
/|___________________|
| |
| |
| | U-shaped
| |
| |
| |
| |____________________
\|___________________|
All of these devices should be used to hook the latch of a door and
pull the latch out of its hole. The folds in the lockpicks will be between
the door and the wall, and so the device will not unfold, if it is made
properly.
2.2 LIST OF USEFUL HOUSEHOLD CHEMICALS AND THEIR AVAILABILITY
Anyone can get many chemicals from hardware stores, supermarkets,
and drug stores to get the materials to make explosives or other dangerous
compounds. A would-be terrorist would merely need a station wagon and some
money to acquire many of the chemicals named here.
Chemical Used In Available at
________ _______ ____________
_____________________________________________________________________________
alcohol, ethyl * alcoholic beverages liquor stores
solvents (95% min. for both) hardware stores
_____________________________________________________________________________
ammonia + CLEAR household supermarkets,
ammonia 7 - Eleven
_____________________________________________________________________________
ammonium instant-cold drug stores,
nitrate paks, fertilizers medical supply stores
_____________________________________________________________________________
nitrous oxide pressurizing party supply stores
drinks and whip cream
_____________________________________________________________________________
magnesium firestarters surplus stores,
camping stores
____________________________________________________________________________
lecithin vitamin? pharmacies, drug
stores
_____________________________________________________________________________
mineral oil cooking, laxative supermarket,
drug store
_____________________________________________________________________________
mercury @ mercury thermometers supermarkets,
hardware stores
_____________________________________________________________________________
sulfuric acid uncharged car automotive stores
batteries
_____________________________________________________________________________
glycerine ? pharmacies, drug
stores
_____________________________________________________________________________
sulfur gardening gardening store,
hardware stores?
_____________________________________________________________________________
charcoal charcoal grills, supermarkets
gardening gardening stores
_____________________________________________________________________________
sodium nitrate fertilizer gardening store
_____________________________________________________________________________
cellulose first aid drug stores,
(cotton) medical supply stores
_____________________________________________________________________________
strontium nitrate road flares surplus stores,
auto stores
_____________________________________________________________________________
fuel oil kerosene stoves surplus stores,
(kerosene) camping stores
_____________________________________________________________________________
bottled gas propane stoves surplus stores,
camping stores
_____________________________________________________________________________
potassium permanganate water purification purification plants
_____________________________________________________________________________
hexamine or hexamine stoves surplus stores
methenamine (camping) (camping stores?)
_____________________________________________________________________________
nitric acid ^ cleaning printing printing shops
plates photography stores?
_____________________________________________________________________________
iodine & first aid drug stores
_____________________________________________________________________________
sodium perchlorate solidox pellets hardware stores
for cutting torches
_____________________________________________________________________________
notes: * ethyl alcohol is mixed with methyl alcohol when it is used as a
solvent. Methyl alcohol is very poisonous. Solvent alcohol
must be at least 95% ethyl alcohol if it is used to make mercury
fulminate. Methyl alcohol may prevent mercury fulminate from forming.
+ Ammonia, when bought in stores comes in a variety of forms. The
pine and cloudy ammonias should not be bought; only the clear
ammonia should be used to make ammonium triiodide crystals.
@ Mercury thermometers are becoming a rarity, unfortunately. They
may be hard to find in most stores. Mercury is also used in
mercury switches, which are available at electronics stores.
Mercury is a hazardous substance, and should be kept in the
thermometer or mercury switch until used. It gives off mercury
vapors which will cause brain damage if inhaled. For this reason,
it is a good idea not to spill mercury, and to always use it
outdoors. Also, do not get it in an open cut; rubber gloves will
help prevent this.
^ Nitric acid is very difficult to find nowadays. It is usually
stolen by bomb makers, or made by the process described in a later
section. A desired concentration for making explosives about 70%.
& The iodine sold in drug stores is usually not the pure crystaline
form that is desired for producing ammonium triiodide crystals.
To obtain the pure form, it must usually be acquired by a doctor's
prescription, but this can be expensive. Once again, theft is the
means that terrorists result to.
2.3 PREPARATION OF CHEMICALS
2.31 NITRIC ACID
There are several ways to make this most essential of all acids for
explosives. One method by which it could be made will be presented. Once
again, be reminded that these methods SHOULD NOT BE CARRIED OUT!!
Materials: Equipment
__________ _________
sodium nitrate adjustable heat source
or
potassium nitrate retort
distilled water ice bath
concentrated stirring rod
sulfuric acid
collecting flask with stopper
1) Pour 32 milliliters of concentrated sulfuric acid into the retort.
2) Carefully weigh out 58 grams of sodium nitrate, or 68 grams of potassium
nitrate. and add this to the acid slowly. If it all does not dissolve,
carefully stir the solution with a glass rod until it does.
3) Place the open end of the retort into the collecting flask, and place the
collecting flask in the ice bath.
4) Begin heating the retort, using low heat. Continue heating until liquid
begins to come out of the end of the retort. The liquid that forms is nitric
acid. Heat until the precipitate in the bottom of the retort is almost dry,
or until no more nitric acid is forming. CAUTION: If the acid is headed too
strongly, the nitric acid will decompose as soon as it is formed. This
can result in the production of highly flammable and toxic gasses that may
explode. It is a good idea to set the above apparatus up, and then get
away from it.
Potassium nitrate could also be obtained from store-bought black powder,
simply by dissolving black powder in boiling water and filtering out the sulfur
and charcoal. To obtain 68 g of potassium nitrate, it would be necessary to
dissolve about 90 g of black powder in about one litre of boiling water. Filter
the dissolved solution through filter paper in a funnel into a jar until the
liquid that pours through is clear. The charcoal and sulfur in black powder
are insoluble in water, and so when the solution of water is allowed to
evaporate, potassium nitrate will be left in the jar.
2.32 SULFURIC ACID
Sulfuric acid is far too difficult to make outside of a laboratory or
industrial plant. However, it is readily available in an uncharged car battery.
A person wishing to make sulfuric acid would simply remove the top of a car
battery and pour the acid into a glass container. There would probably be
pieces of lead from the battery in the acid which would have to be removed,
either by boiling or filtration. The concentration of the sulfuric acid can
also be increased by boiling it; very pure sulfuric acid pours slightly faster
than clean motor oil.
2.33 AMMONIUM NITRATE
Ammonium nitrate is a very powerful but insensitive high-order
explosive. It could be made very easily by pouring nitric acid into a large
flask in an ice bath. Then, by simply pouring household ammonia into the flask
and running away, ammonium nitrate would be formed. After the materials have
stopped reacting, one would simply have to leave the solution in a warm place
until all of the water and any unneutralized ammonia or acid have evaporated.
There would be a fine powder formed, which would be ammonium nitrate. It must
be kept in an airtight container, because of its tendency to pick up water from
the air. The crystals formed in the above process would have to be heated VERY
gently to drive off the remaining water.